Cell type-specific MxA-mediated inhibition of measles virus transcription in human brain cells.

نویسندگان

  • S Schneider-Schaulies
  • J Schneider-Schaulies
  • A Schuster
  • M Bayer
  • J Pavlovic
  • V ter Meulen
چکیده

Measles virus (MV)-specific transcription in human brain cells is characterized by particularly low abundances of the distal mRNAs encoding the MV envelope proteins. Similar transcriptional restrictions of the closely related vesicular stomatitis virus have been observed in mouse fibroblasts constitutively expressing the interferon-inducible MxA protein (P. Staeheli and J. Pavlovic, J. Virol. 65:4498-4501, 1991). We found that MV infection of human brain cells is accompanied by rapid induction and high-level expression of endogenous MxA proteins. After stable transfection of MxA, human glioblastoma cells (U-87-MxA) released 50- to 100-fold less infectious virus and expression of viral proteins was highly restricted. The overall MV-specific transcription levels were reduced by up to 90%, accompanied by low relative frequencies of the distal MV-specific mRNAs. These restrictions were linked to an inhibition of viral RNA synthesis and not to a decreased stability of the viral RNAs. Our results indicate that expression of MxA is associated with transcriptional attenuation of MV in brain cells, thus probably contributing to the establishment of persistent MV central nervous system infections. In addition, the mechanism of MxA-dependent resistance against MV infection, in contrast to that of vesicular stomatitis virus, is cell type specific, because an inhibition of MV glycoprotein synthesis independent of transcriptional alterations was observed in MxA-transfected human monocytes (J. J. Schnorr, S. Schneider-Schaulies, A. Simon-Jödicke, J. Pavlovic, M. A. Horisberger, and V. ter Meulen, J. Virol. 67: 4760-4768, 1993).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MxA Mediates SUMO-Induced Resistance to Vesicular Stomatitis Virus.

UNLABELLED Multiple cellular pathways are regulated by small ubiquitin-like modifier (SUMO) modification, including ubiquitin-mediated proteolysis, signal transduction, innate immunity, and antiviral defense. In the study described in this report, we investigated the effects of SUMO on the replication of two members of the Rhabdoviridae family, vesicular stomatitis virus (VSV) and rabies virus ...

متن کامل

Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes.

Bunyaviruses replicate in the cytoplasm of infected cells. New viral particles are formed by budding of nucleocapsids into the Golgi apparatus. We have previously shown that the IFN-induced human MxA protein inhibits bunyavirus replication by an unknown mechanism. Here we demonstrate that MxA binds to the nucleocapsid protein of La Crosse virus (LACV) and colocalizes with the viral protein in c...

متن کامل

Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome.

Mx proteins belong to the dynamin superfamily of high molecular weight GTPases and interfere with multiplication of a wide variety of viruses. Earlier studies show that nuclear mouse Mx1 and human MxA designed to be localized in the nucleus inhibit the transcription step of the influenza virus genome. Here we set a transient influenza virus transcription system using luciferase as a reporter ge...

متن کامل

Buthionine Sulfoximine Inhibits Cytopathic Effects and Apoptosis Induced by Infection with AIK-HDC Strain of Measles Virus

Measles virus (MV) is a highly contagious agent which causes a major health problem in developing countries. We studied the effect of buthionine sulfoximine (BSO) on the replication of an AIK-HDC strain of MV and its induced apoptosis in Vero cell lines. Methods: In this study, toxicity of BSO on Vero cells was investigated first, resulted in determination of sub-lethal or non-toxic concentrati...

متن کامل

CuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53

Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 68 11  شماره 

صفحات  -

تاریخ انتشار 1994